
Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

Page 1 of 5

Adobe Photoshop®

TIFF Technical Note 3

April 8, 2005

This document describes additions to the TIFF specification to improve support for floating point
values.

Readers are advised to cross reference terms and discussions found in this document with the
TIFF 6.0 specification (TIFF6.pdf), the TIFF Technical Note for Adobe PageMaker® 6.0 (TIFF-
PM6.pdf), and the File Formats Specification for Adobe Photoshop® (Photoshop File
Formats.pdf).

Copyright
© 2005 by Adobe Systems Incorporated. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distributed for direct commercial
advantage and the Adobe copyright notice appears. If the majority of the document is copied or
redistributed, it must be distributed verbatim, without repagination or reformatting. To copy
otherwise requires specific permission from the Adobe Systems Incorporated.

License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software (the
"Software"), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

Page 2 of 5

16 and 24 bit Floating Point Values

Introduction

This section describes the format of floating point data with BitsPerSample of 16 and 24.

Field: SampleFormat
Tag: 339 (153.H)
Type: SHORT
Count: SamplesPerPixel
Value: 3 = IEEE Floating point data

Field: BitsPerSample
Tag: 258 (102.H)
Type: SHORT
Count: SamplesPerPixel
Value: 16 or 24

16 and 24 bit floating point values may be used to minimize file size versus traditional 32 bit or 64 bit floating point
values. The loss of range and precision may be acceptable for many imaging applications.

The 16 bit floating point format is designed to match the HALF data type used by OpenEXR and video graphics
card vendors.

Implementation

16 bit floating point values
16 bit floating point numbers have 1 sign bit, 5 exponent bits (biased by 15), and 10 mantissa bits.

The interpretation of the sign, exponent and mantissa is analogous to IEEE-754 floating-point numbers. The 16 bit
floating point format supports normalized and denormalized numbers, infinities and NANs (Not A Number).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S E E E E E M M M M M M M M M M

24 bit floating point values
24 bit floating point numbers have 1 sign bit, 7 exponent bits (biased by 63), and 16 mantissa bits.

The interpretation of the sign, exponent and mantissa is analogous to IEEE-754 floating-point numbers. The 24 bit
floating point format supports normalized and denormalized numbers, infinities and NANs (Not A Number).

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S E E E E E E E M M M M M M M M M M M M M M M M

References
http://www.openexr.com/documentation.html
http://oss.sgi.com/projects/ogl-sample/registry/ARB/half_float_pixel.txt

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

Page 3 of 5

Floating Point Predictor

Introduction

This section describes TIFF predictor type 3, a byte reordering of the image values followed by horizontal byte
differencing used to improve compression of floating point image data.

Field: Predictor
Tag: 317 (13D.H)
Type: SHORT
Count: 1
Value: 3 = Floating Point predictor

Note that this predictor works well for both Deflate and LZW compression methods.
This predictor should only be applied to floating point data that has BitsPerSample equal to a multiple of 8.

Algorithm

This predicator makes use of the fact that many continuous-tone images don’t vary much in pixel value from one
pixel to the next. Additionally, in floating point data, the sign and exponent values will not change much from pixel
to pixel, and the most significant bits of the mantissa will not change much from pixel to pixel, while the least
significant bits of the mantissa may change a great deal (statistically equal to noise).

By rearranging the floating point data to group the sign and exponent data, the upper bytes of the mantissa and the
lower bytes of the mantissa separately – we can then use a simple byte differencing predictor to reduce the apparent
information content and allow for better compression by LZW or Deflate compressors. By putting the sign and
exponent first (slowest changing), followed by most significant bytes of the mantissa (next slowest changing) then
the least significant bytes (fastest changing, most noise-like), we achieve the best compression. This means that the
predictor reorders the bytes into a semi-BigEndian order, and that the TIFF reader and writer should not change the
byte order of the image data outside of the predictor. This predictor also preserves the ordering of interleaved color
channels.

A simple C implementation might look like this:

/* --- */

void DecodeDeltaBytes(void *ptr, int32 cols, int32 channels)
{
int32 COL, CHAN;
unsigned char *bytePtr = (unsigned char *)ptr;

for (COL = 1; COL < cols; ++COL)
{
for (CHAN = 0; CHAN < channels; ++CHAN)

bytePtr[COL * channels + CHAN] =
bytePtr[COL * channels + CHAN]
+ bytePtr[(COL - 1) * channels + CHAN];

}
}

/* --- */

void EncodeDeltaBytes(void *ptr, int32 cols, int32 channels)
{
int32 COL, CHAN;
unsigned char *bytePtr = (unsigned char *)ptr;

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

Page 4 of 5

for (COL = cols-1; COL > 0; --COL)
{
for (CHAN = 0; CHAN < channels; ++CHAN)

bytePtr[COL * channels + CHAN] =
bytePtr[COL * channels + CHAN] -
bytePtr[(COL - 1) * channels + CHAN];

}
}

/* --- */

void EncodeFPDelta(unsigned char *input,
unsigned char *output,
int32 cols,
int32 channels,
int32 bytesPerSample)

{
int32 COL, BYTE;

// reorder the bytes into the output buffer
// result is always in the same byte order (big endian, sort of)

int32 rowIncrement = cols * channels;

for (COL = 0; COL < rowIncrement; ++COL)
{
for (BYTE = 0; BYTE < bytesPerSample; ++BYTE)

{
#if BigEndian

output[BYTE * rowIncrement + COL] =
input[bytesPerSample * COL + BYTE];

#else
output[(bytesPerSample-BYTE-1) * rowIncrement + COL] =

input[bytesPerSample * COL + BYTE];
#endif

}
}

// do byte difference on output
EncodeDeltaBytes (output, cols*bytesPerSample, channels);

// output data is now in semi-BigEndian byte order

}

/* --- */

void DecodeFPDelta(unsigned char *input,
unsigned char *output,
int32 cols,
int32 channels,
int32 bytesPerSample)

{
int32 COL, BYTE;

// undo byte difference on input
DecodeDeltaBytes (input, cols*bytesPerSample, channels);

// reorder the semi-BigEndian bytes into the output buffer

int32 rowIncrement = cols * channels;

for (COL = 0; COL < rowIncrement; ++COL)
{
for (BYTE = 0; BYTE < bytesPerSample; ++BYTE)

{
#if BigEndian

output[bytes * COL + BYTE] =
input[BYTE * rowIncrement + COL];

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

Page 5 of 5

#else
output[bytes * COL + BYTE] =

input[(bytesPerSample-BYTE-1) * rowIncrement + COL];
#endif

}
}

// output data is now in native byte order

}

/* --- */

